Statistical pattern detection in univariate time series of intensive care on-line monitoring data
نویسندگان
چکیده
منابع مشابه
Anomaly Detection for Univariate Time-Series Data
Some of the biggest challenges in anomaly based network intrusion detection systems have to do with being able to handle anomaly detection at huge scale, in real time. The incoming data stream is homogeneous, containing different anomalous patterns along with a large amount of normal data. We pose the problem as that of detecting the anomaly in the data stream in realtime. We define an approach...
متن کاملOn the Detection of Trends in Time Series of Functional Data
A sequence of functions (curves) collected over time is called a functional time series. Functional time series analysis is one of the popular research areas in which statistics from such data are frequently observed. The main purpose of the functional time series is to predict and describe random mechanisms that resulted in generating the data. To do so, it is needed to decompose functional ti...
متن کاملGraphical models for multivariate time series from intensive care monitoring.
Nowadays physicians are confronted with high-dimensional data generated by clinical information systems. The proper extraction and interpretation of the information contained in such massive data sets, which are often observed with high sampling frequencies, can hardly be done by experience only. This yields new perspectives of data recording and also sets a new challenge for statistical method...
متن کاملPattern recognition in intensive care online monitoring
Clinical information systems can record numerous variables describing the patient’s state at high sampling frequencies. Intelligent alarm systems and suitable bedside decision support are needed to cope with this flood of information. A basic task here is the fast and correct detection of important patterns of change such as level shifts and trends in the data. We present approaches for automat...
متن کاملData-driven pattern identification and outlier detection in time series
We address the problem of data-driven pattern identification and outlier detection in time series. To this end, we use singular value decomposition (SVD) which is a well-known technique to compute a low-rank approximation for an arbitrary matrix. By recasting the time series as a matrix it becomes possible to use SVD to highlight the underlying patterns and periodicities. This is done without t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Intensive Care Medicine
سال: 1998
ISSN: 0342-4642,1432-1238
DOI: 10.1007/s001340050767